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In a recent paper (see [11]), L. Greengard and V. Rokhlin introduce a numerical technique for
the rapid solution of integral equations resulting from linear two-point boundary value problems
for second order ordinary differentiat quations. In this paper, we extend the method to systems
of ordinary differential equations. Afier reducing the system of differential equations to a system/
of second kind integral equations' we discretize the latter via a high order Nystrbm scheme. A
somewhat involved analytical appa~atus is then constructed which allows for the solution of the
discrete system using O(N • p2 . n ) operations, with N the number of nodes on the interval,
p the desired order of convergence, and n the number of equations in the system. Thus, the
advantages of the integral equation formulation (small condition number, insensitivity to boundary
layers, insensitivity to end-point singularities, etc.) are retained, while achieving a computational
efficiency previously available only to finite difference or finite element methods.

We in addition present a Newton method for solving boundary value problems for nonlinear first
order systems in which each Newton iterate is the solution of a second kind integral equatio.i; the
analytical and numerical advantages of integral equations are thus obtained for nonlinear boundary
value problems.
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I. Introduction

Second kind integral equations have been a popular analytical tool in the study of ordi-
nary differential equations for nearly a century. When boundary value problems are being
considered, the integral equations which arise are of the Fredholm type. From an abstract
viewpoint, the advantage of this formulation is that many properties of the solution are readily
apparent; from a computational viewpoint, the linear systems which arise from discretization
are generally well-conditioned. An ill-behaved differential equation can often be reduced to a
perfectly tractable integral equation by means of an appropriate choice of the "background"
Green's function. Standard finite difference and finite element methods, on the other hand,
which discretize the original differential equation, encounter serious numerical difficulties when
the solution possesses derivatives of large magnitude (boundary layers). A second advantage is
that there exist extremely 'ztable, high order numerical methods for the solution of second kind
Fredholm equations, while the order of convergence of most practical schemes for the solution
of ordinary differential equations tends to be limited, even if Richardson extrapolation and
deferred correction approaches are considered.

Despite all these advantages, integral equations are virtually never used as a numerical tool
for the solution of two-point boundary value problems, since their discretization leads to dense
systems of linear algebraic equations, and the solution of a dense linear system of dimension N
requires order O(N 3) arithmetic operations. Finite difference and finite element schemes lead
to banded systems of linear algebraic equations, and the solution of the latter requires order
O(N) arithmetic operations, with N the dimension of the problem. This makes the use of
integral equations extremely unattractive as a numerical tool, despite their superior analytical
properties. A similar difficulty is encountered when spectral methods are applied to boundary
value problems. They yield high order accuracy, but result in dense systems of linear algebraic
equations.

Recently, [11] presented a fast numerical algorithm for solving two-point boundary value
problems for second order differential equations. By solving the problems as second kind
integral equations, one obtains the superior properties of integral equations over differential
equations. By using the technique of [11], integral equations arising from boundary value
problems are solved in order O(N) arithmetic operations.

In this paper, we extend the results of [11] by showing that integral equations arising from
two-point boundary value problems for systems of ordinary differential equations can also be
solved for a cost proportional to the number of nodes N. We in addition present a Newton
method for solving boundary value problems for nonlinear first order systems in which each
Newton iterate is the solution of a second kind integral equation.

The plan of this paper is as follo-s: in Section 2 w,- summarize both the theory of Green's
functions for first order linear systems and the theory of Newton methods for first order non- For

linear systems, in Section 3 we develop the analytical apparatus to be used, and in Section 4
we describe the numerical schemes themselves. The performance of the methods is illustrated 

gd []in Section 5 with numerical examples. Our conclusions are discussed in Section 6.
The present paper is similar to [11] in that while it is based on a sequence of fairly simple

observations, the details of the algorithm are somewhat involved. We attempt in this paper to
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present both cursory, qualitative descriptions as well as detailed, rigorous proofs.

II. Mathematical Preliminaries

In this section, we summarize the relevant properties of both the boundary value problems
to be addressed and the second kind integral equations to be used for their solution. Most of the

results are classical and can be found, for example, in [3] and [4]. The rest are straightforward

generalizations to systems of ordinary differential equations of well-known facts concerning
second order boundary value problems (see, for example, [5]).

2.1. Notation and Definitions

Definition 2.1 A linear first order system of ordinary differential equations is an expression

of the form
V'(x) + p(x). = f, (1)

with D : [a,c] -- Rn in C 1 [a,c], p: [a,c] -. L(R n x n ) and f : [a,c] - R n continuous, and

L(R" ×f) denoting the linear space of all linear operators R' --+ R'.

Definition 2.2 If f(z) 0= , (1) assumes the form

VW)+ p(x) .A(x) = 0, (2)

and is referred to as a linear homogeneous first order system of ordinary differential equatiol.s.

Definition 2.3 A differentiable function 4) : [a,c] -- Rn is a solution to a linear first orde r

boundary value problem if it satisfies an equation of the form (1), subject to boundary conditions

of the form
A -4(a) + C. 4)(c) = y- (3)

with A, C E L(R"x'f), and -Y E R'.

Definition 2.4 If -y 0, (3) becomes

A- 4(a) + C. 4)(c) =0. (4)

and is referred to as a set of homogeneous boundary conditions.

Definitions 2.5-2.6 are the nonlinear analogues to Definitions 2.1 and 2.3.

Definition 2.5 A nonlinear first order system is defined as an expression

'(x) = F(4)(z), r), (5)

with 4t : [a,c] --, R' in C'fa,c], F: R' + ' - R' continuous.
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Definition 2.6 A differentiable function 4 : [a, c) --+ R n is a solution to a nonlinear first

order boundary value problem if it satisfies an equation of the form (5), subject to boundary

conditions of the form
A. 4(a) + C. €(c) = y, (6)

with A,C E L(Rnxn), -f E R n.

Definition 2.7 A continuous function G(x, 1) : [a, c] X [a, c] L(Rnxn) is the Greens functio,

for a boundary value problem (1), (4) if

1. K is continuous except at x = t,

2. G(r + 0,x) - G(x - 0,x) = In for all x E [a,c],
3. 8 G(x, t) + p(x).-G(x, t) =0 for all x, t E [a, c], x 0 t,

4. A .G(a,t)+C .G(c,t) = 0 for allt E [a,c].

Remark 2.1 Green's functions are the principal analytical tools which enable boundary value

problems to be solved as second kind integral equations. However, Green's functions are klown

or computable for very few problems (1), (4). Fortunately, we can use one of the known Gruen's

functions when constructing the second kind integral equation for a particular boundary value

problem. When a Green's function unrelated to a problem (1), (4) is used to convert that

problem to an integral equation, we will refer to this Green's function as a background Green's

function.

Definition 2.8 A function T : [a,c] -, L(Rnx n ) is called a fundamental matrix for (2) if it is

nonsingular and
T'(x) + p(x). T(x) = 0 (7)

for all x E [a, c].

We define boundary condition matrices D and DN to be used in theorems in the remainder

of Section II.

Definition 2.9 Given a fundamental solution matrix T of the system (2), and a pair of ma-

trices A, C given by (3), the boundary condition matrices D, D, E L(R nX) are defiotd by Ih(

formulae

D = A. T(a) + C. "T(c), (S)

DN = A + C. (9)

We define a residual mapping K and Newton iterates bk to be used in a Newton method

for nonlinear boundary value problems.

Definition 2.10 Given functions Go,po : [a,c] x [a,c] - L(Rnx×"), we define tht residual

mapping K : Rn+l - R" by the formula

K(a(x),x)=(x) - pn(x) -IGo(x,t). dt - F Go(x,t).t) dt. x . (10)
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Definition 2.11 For any continuous ao [a,c) * R n , we refer to the continuous functions
bk :[a, c] - Rn as Newton iterates if for each k = 1,2,...,

= ok+1 (x) - ((Ii)

with each continuous Ork : [a, c] -* R n recursively defined via the formula

Ml,(Ck(X), X)Oa )k . (ak+l(x) - ak(r)) = -K(ak(x),x), k = 0, 1,.... (12)

Finally, we define a transposition operator to be used in the paper.

Definition 2.12 Given an interval [bl,b 2] C R and a mapping X : L2[b1,b 2] -- L(Rxn). the
transpose XT : (L 2[b1, b21)' _ R n of X is defined by the formula

XT(a) = j X(t) .a(t) dt, (13)

with a e (r)n.

2.2. Green's Functions for First Order Systems
Theorems 2.1-2.8 provide the tools for the conversion of first order systems of differential

equations into second kind integral equations. Theorems 2.1, 2.2, 2.5 and 2.6 are well known
and can be found, for example, in [3] and [4]. The authors failed to locate the remaining
theorems in the literature.

Theorems 2.1-2.2 provide conditions for the existenc, and uniqueness of solutions to (1).
(4).

Theorem 2.1 For any continuous function p : [a,c] -- L(Rnxn), the homogeneous first ord r
system (2) has exactly n linearly independent solutions.

Theorem 2.2 If the matrix D defined by (8) is nonsingular, then there is a unique solution 4)
to the equation (1) satisfying homogeneous boundary conditions (4). Furthermore. thc soluti(,l
to the homogeneous equation (2) satisfying homogeneous boundary c,.nd , ,ns (4) is i(.) _- .

The purpose of the following two theorems is to permit the conversion of problems will)
inhomogeneous boundary conditions to those with homogeneous ones. Theorem 2.3 coiiccrn,
linear problems of the form (1), (3); Theorem 2.4 concerns nonlinear problems of the form (,).
(6).

Theorem 2.3 If the boundary condition matrices D, DN defined by (8), (9) are both non,071-
gular, then the solution to the problem (1), (3) is given by the formula

D(X) = 4D(x) + V, (14)
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with L, E R" given by the formula

V = (A + C)-. • , (15)

and ' [a, c] -- R t in C'[a, c] the solution to the first order system

4'(x) + p(x). (X) = f(x) - p(x) v, (16)

satisfying homogeneous boundary conditions (4).

Proof. Since the matrix D is nonsingular, it immediately follows from Theorem 2.2 that there
exists a unique 4 satisfying the equation (16). Substituting (14) into boundary conditions (3),
we obtain

A. (+a) + v) + C.- (,i(c) + v) = -y. (17)

Now, (15) is easily obtained from the combination of (17) and (4), while (16) is a result of
substituting (14) into (1). 0

Theorem 2.4 If there exists a unique solution 1 : [a, c] -- R n to the problem (5), (6). and if
the matrix D, defined by (9) is nonsingular, then 4 is given by the formula

S(x) = ,'(x) + v, (Is

with v E R' given by
v = (A + C)- 1 'y, (19)

and 4) :[a, c] R E C' [a, c] the solution to the nonlinear boundary value problem

'(x) = F(4 + v,x) (20)

with homogcneous boundary conditions (4).

Proof. Substituting (18) into boundary conditions (6) we obtain

A.- (4 (a) + v) + C . (4(c) + v) = 7- (21)

Now. (19) is easily obtained from the combination of (21) and (4), while (20) is a result of
substituting (18) into (5). E

Theorem 2.5 provides an explicit construction for the Green's function for a boundary value
problem with a known fundamental matrix T. Given a Green's function for a homogeueou.,
problem (2). (4), Theorem 2.6 provides an explicit solution for the inhomogeneous problem (1).

(4).

Theorem 2.5 If the matrix D defined by (8) is nonsingular, then there exists a uniqce Grn"I,>
function G: [a,c] x [a,c] - L(R nx) for (2), (4). G is given by the formula

fT(x) .(T-(t) + J(t)) (t < x),
T(x) J(t) (t > X),



with J [a,c] - L(R n xfn) given by the formula

J(t) = -D - 1 C. T(c) . T-1(t), (23)

and T [a, c] L(R n xfl) the fundamental matrix for (2) (see Definition 2.8).

Theorem 2.6 Given a Green's function for the problem (2), (4), the solution 4) for the probleni
(1), (4) can be obtained via the formula

4D(x) = j G(x, t) . f(t) dt. (24)

The following two theorems are the principal analytical tools used in this paper. Theorem
2.7 is used to reduce a linear boundary value problem (1), (4) to a second kind integral equation.
even when the Green's function for the problem is not available; Theorem 2.8 is used in the
same fashion to reduce nonlinear boundary value problems (5), (4) to nonlinear second kind
integral equations.

Theorem 2.7 Suppose po : [a,c] - L(R x n) is continuous, T0 : [a.c] - L(R" ' ' ) is tlc
fundamental matrix for the equation

4'(x) + pO(x) (x) = 0, (25)

ond G: [a, c) x [a, c) , L(R ×nx) is the Green's function for the boundary value probl(m (:25).
(4). Suppose further that the matrix D defined by (8) and the matrix Do E L(R ' ×x? ) defind
by the formula

Do = A • To(a) + C-T0(c), (26)

are both nonsingular. Then the solution D to the problem (1), (4) can be obtained via th(

formula

4)(x) = Go(x, t) . a(t) dt, (27)

with a : [a, c] - R ' the solution to the second kind integral equation

a(x)+ [p(x)-po(x). Go(x,t).a(t)dt = f(x). (2)

Proof. By Theorem 2.2, if matrices D, D0 are nonsingular then the problems (1), (4)
and (25), (4) have unique solutions, and therefore the background Green's function Go i., also
unique, and is defined by Theorem 2.4. Now, (28) is obtained by substituting (27) into (1). D

Remark 2.2 Ifp0(x) = p(x), then the solution toequation (28)is trivially r f. Our working
assumption is that for some background problem (25), (4), the Green's function is known or
computablo, but that for the original differential equation (1), (4) the Green's function is
unavailable.
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Theorem 2.8 Suppose t : [a, c] -- R' is the unique solution to (.15), (4). Suppose further that
P f : [a,c] --* L(R"'f) is continuous, and To : [a,c] - L(R n

n) is a fundamental matrix for
the equation

V'( ) + po(x). (x) = 0, (29)

and Go : [a,c] x [a,cl ---, L(Rn xl) is the Green's function for the boundary value problem (25),
(4). Suppose finally that the matrix Do defined by the formula

Do = A. To(a) + C. To(c) (30)

is nonsingular. Then iD can be obtained via the formula

ip(x) = lC Go(x, t). a(t) dt, (31,'

with a : [a, c] - R n the solution to the second kind integral equation

a(x) - po(x) j Go(x, t). r(t) dt = F (J Go(x, t) a(t) dt, x (32)

Proof. Since Do is nonsingular, the background Green's function Go is unique, and there-
fore 4D can be obtained from (31). Now, (32) is obtained by substituting (31) into (5). D

2.3. Green's Functions for Particular Equations
Lemmas 2.1 - 2.4 of this subsection provide fundamental matrices and Green's functions

for two particular types of boundary value problems. Lemmas 2.1, 2.2 are easily verified by
substituting formulae (34), (35) into (7), (22). Similarly, Lemmas 2.3, 2.4 are verified by
substituting formulae (37), (38) into (7), (22).

Lemma 2.1 A fundamental matrix To for the equation

' = 0 (33)

is given by the formula
To(x) -I, (3-1)

with n the dimensionality of the problem (33), and x E [a.c] (in accordanc( with standard
practice, In denotes the unity operator R n _ R n).

Lemma 2.2 The Green's function Go corresponding to thc equation (33) subj(ct to boundary
conditions (4) is given by the formula

Go(x,t)= In -(A+ C)-'.C (t < x), (35)
-(A + C)- 1 . C ( > x).
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Lemma 2.3 For any A E R, a fundamental matrix To for the equation

,V(x) + A. ,4(x) = 0 (36)

is given by the formula
To(x) = e - : • In, (37)

with n the dimensionality of the problem (36), and x E [0, 1].

Lemma 2.4 The Green's function Go corresponding to the equation (36) subject to boundary,
conditions (4) is given by the formula

Go ) = n -(A+ eA -C ) - 1 . C (t <2-)UGo t= -e - 1) . (A + e- -C) - . C (t > X).3)

2.4. Linear Transformations for Problems with Singular Do or D.
The purpose of Theorem 2.9 is to permit the conversion of a problem (1), (3) to a second

kind integral equation (28). For most problems, Theorems 2.3 and 2.7 allow such a conversions.
but Theorem 2.3 cannot be used when tile matrix DN, defined by (9) is singular, while Theorem
2.7 cannot be used when the matrix Do defined by (26) is singular. We remove these obstacles
in this subsection by providing a scheme which reduces a problem of the form (1). (3) with
singular matrices Do. D, to a problem of the same form with nonsingular DO, D...

Theorem 2.10 generalizes Theorem 2.9; it permits the conversion of nonlinear problems of
the form (5). (6) to nonlinear integral equations of the form (32).

Remark 2.3 If only the matrix Do is singular, one can always choose a new backgroiimd
Green's function Go for which Do will be nonsingular. However, we have found that foi most
problems it is easier to develop a transformation of the type described in this subsection t hin
to develop an alternate background Green's function.

Theorem 2.9 Suppose 4D : [a, c] - R' is the unique solution to the problem (1). (4). Suppo.4(
further that T0 :[a, c] - L(R nxn) is a fundamental matrix for the background equation (25).
Suppose finally that there exists '1: [a,c] - L(R n

,) such that 'T E C' [a, c], (let T (x) $ 0 for
all x E [a, c], and the matrix

Do = A • 1(a) • To(a) + C. '1P(c). To(c) (39)

i., non.siingular, Then t equation

F'(x) + %P-l(x). (V'(x) + p(x) 'tk(x)) , F(x) = T- (x) f(x). (10)

subject to boundary conditions

A -1(a) -F(a) + C - T(c)-1(c) = 0. (4-1)

has a unique solution F :[a,c] , R', and

,(x) = P(x). r(x), (42)

for all x E [a, c].
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Proof. We immediately obtain (41) by substituting (42) into (4). Now, substituting (.2)
and its derivative into (1), we get

= • + r'(x) + 1r() = (43)

and obtain (40) by combining (43) with the fact that 1(x) is nonsingular for all x E [a, c]. 0

Remark 2.4 Clearly, the transformed problem (40), (41) satisfies the conditions of Theorem
2.7, as D0 defined by (39) is nonsingular. However, for many problems, the boundary condition
matrix D, defined by the formula

DN = A • T(a) + C. -(c). (44)

is singular, and therefore the transformed problem fails to satisfy the conditions of Theorem 2.3.
If on,- needs to use the results of both The rem 2.7 and 2.3, one must choose a transformation
4' such that both Do and DN are nonsingular.

Of course, it is easier to choose transformations T when Do = D,. This is true when
the background Green's function is chosen to correspond to the equation 4V = 0. By Lemma
2.1, the fundamental matrix for this equation is T = l; the equivalence for this fundamental
matrix of (39) and (44) is readily apparent.

Theorem 2.10 is the nonlinear analogue of Theorem 2.9; the proofs of the two theorelns are
nearly identical.

Theorem 2.10 Suppose -1: [a,c] - R' is the unique solution to the problem (5), (4). Snppo.sc
further that To : [a, c] -- L(RlIn) is a fundamental matrix for the background equation (25).
Szpplo.,c finally that there exists 11': [a,c] -- L(Rnxn) such that '1 E C1 [a,c], det T ,(x) 5 0 fo,
all x E [ac], and the matrix

Do = A. (a). To(a) + C -1(c) TO(c) (45)

is nonsingular. Then the equation

F'(x) + -'(x)T1'(x) • r(x) = T-l(x) -F(4'(x) -F(x).r) (H(i)

subject to boundary conditions

A • 11(a) • F(a) + C. 14(c). F(c) = 0. (-17)

has a unique solution F :[a,c] - R , and

,(x) = 11(x). r(x), (48)

for all x E [a, cl.
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2.5. Newton's Method for Nonlinear Boundary Value Problems
Theorems 2.4, 2.8 of Section 2.2 reduce nonlinear boundary value problems of the form

(5), (6) to nonlinear second kind integral equations of the form (32). In this subsection, we
describe the convergence properties of the well-known Newton's method as applied to the
latter (Theorem 2.12), and reduce each step of Newton's algorithm to the solution of a linear
boundary value problem of the form (1), (4) (Theorem 2.11).

Theorem 2.11 permits each Newton iterate bk defined by (11) to be expressed as the solution
to a second kind integral equation.

Theorem 2.11 Suppose K : R ' + 1 - R' in Cl[a,c] defined by (10) is Frdchct differentiabl(

at every point x E [a, c], and "k : [a, c] - R ' is defined for all k = .1 .... ia the formula

4)k(X) = jGo(x,t) ak(t)dt, (9)

with Crak : [a. c] - R ' defined by (12), and Go: [a, c] x [a, c]- L(Rnxn) the Green', fumction,

fur (25., (4). Then the Aecwton iterates 6k : [ac] - R E C°[a.cj given by Definition 2.14

satisfy the equation

6k(lx) + Pk(x) • G'o(x, t).6k(t)dt = gk(.-) (50)

f, at = 0, 1 ., with S
2 k :[a, c] - L(R " ' ) defined for all k = 0. 1 .... by thc formula

OF(4)k(X ),x) Po((

and g- : [a, c3 - L(R 'l ×f) defined for all k = 0, 1, .. . by the formula

gk(X) = po(x) . 'k(X) + F(4)(x),x) - ak(x). (52)

Proof. (50) is obtained by substitutiriz the Fr6chet derivative of the function K into (12).

and substitul ing (49), (51), (52) into the resulting equation. El

The convergence properties of Newton's method have been thoroughly studied. Theorem

2.12 is one fundamental result, and can be found, for example, in [12] (in a slightly different

form ).

Theorem 2.12 Sopposc 4) is th unique solution to (5), (4), & is the solution to (32). uid ,

is the uniquc solution to (50) (so that the linearization (50) to the equation (32) is 7iona.iiialar

(it a7). ThV n th(re exists ( > 0 such that for any ao : [a, c] - R" satisfying the conditiO,

11,70 - &11 <- (3

and Newton iterates k : [a,c] - R' defined by (11),

I. jIk - &I < ( for all k = 1,2,...,

2. lim a, = ,,

3. Ck conerge." to & quadratically.
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2.6. A Lemma from Linear Algebra
Given a perturbation of the unity operator I(L2), : (L 2)' --4 (L 2 ) , the Lemma 2.5 provides

its inverse. It is normally used when the rank of the perturbation is low, is a particular case of
the Sherman-Morrison formula (see, for example, [9]), and is easy to verify directly.

Lemma 2.5 For any two vectors U,V E (L 2)nn such that 1 T
. U 5 I",

(I(L2)n - 6 .VT)- 1 = I(L2)n + U • (In - VT. U) - 1 . 1 T (54)

III. The Analytical Apparatus

In the remainder of this paper, we assume that the solution to the problem (1), (4) is
being sought on the interval [a,c], and that b is some intermediate point (a < 6 < c). The
fundamental observation on which Algorithm A is based is that the solution to the integral
equation (2S) on the entire domain [a,c] can easily be constructed from the solutions of two
independent integral equations, one defined on [a, bJ and one on [b, c]. This leads naturally to
a recursive algorithm, in which independent solutions on a large number of subintervals are
successively merged until the full solution is obtained. A precise formulation of the constructioll
and the resulting numerical scheme will require some notation.

3.1. Notation We will denote the subintervals [ab] and [b,c] of [a,c] by A and B. respec-
tively. For convenience, we write the integral equation (28) in the form

a(W)+ P(X). Go(xt).a(l)dt = f(x). (55)

with fi(x) = p(x) - po(x). and Go : [a, c] x [a, c] - L(R ' x n ) the background corresponiding to

the equation (25) subject to boundary conditions (4).
We define the operator P :(L 2[a, c])' - (L 2[a, c]) n corresponding to (55) by the formula

P(a)(x) = a(r)+i(x). Go(xt).a(t)df. .di

so that1 we: have
Pa = f. 5

We will require, the four operators

PAA ( L2[a,b])' - (L 2 [a.b])n

PAB (L 2[b.c])' - (L 2 [a,b]),

PBA (L 2 [a,b]) ' - (L 2 [b,c])n

PBB (L2 [b,c]) -
-* (L2[b,c]) '

11



defined by the formulae

PAA(C)(Z) = a(x) + P(x). Go(x, t). c(t) dr, (5.)

PAB(a)(X) = (X) Go(x ,t). a(t)dt, (59)

PBA(a)(X) = (X). b Go(x, t). u(t) dt, (60)

PBB(1)(X) = a(X) + A(). j Go(x, t) a(t) di. (61)

We define the operator Q : (L 2 [a, c])" 'X -- (L 2 [a,c])nxn by the expression

Q(X)(x) = x(X) + Ax) " Go(x, t). x(t) dt. (62)

We additionally require the four operators

QAA (L 2 [a, b])x 
--n (L 2 [a.b])n xn

QAB (L 2 [b,c])" xn-n (L 2 [a,b])?'"

QBA : (L 2 [a.b])nxn - (L 2 [b,c ] )" ' ,

QBB (L 2 [b,c]),X n - (L 2 [b,c)lXn,

defined by the formulae

QAA(X)(x) = x(x)+ (r)" Go(x,t) -X(?) dt, (6:3)

QA(XX AX o(X, t)'- xk(t) dt, (6-1)

QBA(W)(x) = (x) a Go(x, t) x(t) dt, (65)

Q BB(,')(X) = X(X)+ P(X) .- b o(x, t) .- )(t) dt. (wi()

\We also require the functions t, VL, ZR' : [a, c] - L(R ' × n ) defined by the formulae

iJ(x) = P(x).To(x), (67)

vL(t) = To1(t)+Jo(I), (6S)

vM(t) = Jo(t), (69)

with To the fundamental matrix for equation (25), and Jo : [a, c] - L(R " "xn) defined by the

formula
Jo(t) = -Do 1 • C. To(c) . To'(t), (70)

with the matrix Do defined by (26), and the matrix C given by (4).
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Given a function f E (L2[a,c]) n , we will follow the convention of denoting its restriction
to A and B by fjA and fiB, respectively. Similarly, given a function V E (L 2 [a, c]) n xn, we will
denote its restriction to A and B by OIA and OPB, respectively. Assuming that the operators
PAA,PBB are nonsingular, we define the functions rlA : A -- R', 71B : B --+ R ' via the formulae

77A = PA](flA), (71)

77 = Pi(fjB). (72)

Similarly, assuming that the operators Q, QAA,Q BB are nonsingular, we then define the map-
pings

X [a, c]x _ L(Rnxn),

OA Anxn - L(Rnxn),

C fl: BnXn -L(Rnxn),

via the formulae

X - Q-(4'), (73)

OA = Q, (7-1)

PB = Q OI(B)- (75)

Finally, we will define six matricesa A B , 0 LR E L(R ×f) by the formulae

aA = VL(t) OA(t) di, (76)

A = b, (77

a = VR(t) CB(t) di, (78)

aL = v(t) OB M d, (79)

aL = vR(t) x(t)dt, (so

OR = IVR(t) X(t)dt, (I)

and six vectors 6A, 6, 6B , 6 L, 6 RE R n via the formulae

= Iv(t) .()adt, (82)

6A= vR(t), l()dt, (83)

6B = cv(t).7B()dt, (84)

13



C

6B 6 vW(t).B(t) dt, (s5)

6L = jvL(t).a(t)dt, (86)

,zR v- v (t ) a (t ) d t , ( 8 7 )

with a the solution to equation (57).

3.2. Analysis of the operators PAB, PBA
In this subsection, we observe that each of the operators PAB and PBA is of rank n, and

give simple expressions for these operators.

Lemma 3.1 In the notation of the preceding subsection,

PAB = IPA" vr, (S,1)

PBA = 'ISB vT. (9)

Proof. We obtain (88) by observing that x < t for any x E [a,b],t E [b,c], and by usig

(59) and (69). Similarly, (89) follows from the combination of (60), (69) and observing thaft

x > t for any xE [b, c], t E [a, b]. 0

3.3. Recursive solution of the integral equation (57)
We now consider the original integral equation (57)

Pa = f.

The main result of this subsection is the following lemma, which constructs the solutlion 17

of equation (57) from 77A, T2B of equations (71) and (72).

Lemma 3.2 If, in the notation of Section 3.1, all six operators P, PAA, PBB.Q. QAA. QBB
are nonsingular, and the matrices A,, A 2 E L(R n n ) defined by the fornuulac

A , - a A aB (90)

A2 B AA2  = , -, .o ,(91)

arf also nonsingular, then

C'lA = 77A + A A 2 (ORB  LA 6 R), (92)

alB = r7B + 'B TA' (aA .6B 6A). (93)

14



Proof. Using definitions (56) - (61), the integral equation

P= f

can be rewritten in the form

PAA(aIA) + PAB(aIB) = fA, (94)

PBA(aIA) + PBB(CIB) = fIB" (95)

The expansions (88) and (89) for PAB and PBA, respectively, can then be used to obtain an
explicit solution to the coupled equations (94) and (95) in terms of the functions 7iA, 77B, 'A,

and 'PB defined by (71), (72), (74), (75), respectively. Indeed, applying the operator PA to
equation (94) and the operator Pg to equation (95), we have

CIA + P, Ai PAB(CIB) = PA(flA), (96)

,9B * PBA(CIA) + aIB = PB(fIB)" (97)

Substituting (88) and (89) into (96) and (97) yields the formulae

CIA + PA " - OIA VR OIB = 77A, (98)

PBB" -'IB " vTL "A + CriB = 77B, (99)

or
T-71A + OA -VR aB = ??A, (100)

T.S•-vL "alA + aB = 77B, (101)

where we have used the definitions (74), (75) for 'A and 'B, respectively. Now, multiplying
(101) by ')A • vT and subtracting it from (100), we obtain

(I(L2).- PA - VTL• T)' IA = 77A - OA " VR "7B (102)

Similarly, multiplying (100) by 'PB • VL and subtracting it from (101) results in the equation

(I(L2)-PB vT" -A vR B = 77B - PB L '7A. (103)

Due to (76), (79), and (82), (85) we can rewrite these equations in the form

(I(L)n - OA "( B "VT)) IA -=" 7A - OA "6B, (10.1)

(ML2)1 - •BL R I = 77B - OB L

By application of Lemma 2.5, we obtain

A = (I(L2) + OA (In - OB. vT . 'A)' aB vT) ('7A - OA 6B), (106)

CIB = (I(L2) + 'PB .(In - a A VT . aL VT) (.7(7B - OB .L). (107)

The equations (92), (93) are now obtained from equations (106), (107) and equations (90).
(91). 0
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Remark 3.1 Suppose that b, and b2 are a pair of real numbers such that a < b, < b2 < G, and
that the interval [b1, b2] is denoted by C. We will denote by PCC the restriction of the operator
P to the interval C, and denote by Qcc the restriction of the operator Q to the interval C.
Assuming that Pcc, Qcc are nonsingular, we define the functions ric : C - R', Oc : C -
L(Rnxn) by

77C CC.lc), (10)

0C C-C (0)" -(109)

By applying the above lemma twice (once for the subinterval [a, bj] and once for [a, b2]), we
may easily observe that there exists \ E Rn such that

a(x) = qc(x) + Oc(x) -A (110)

for all x E C. The exact expression for the vector A is complicated, but irreovant for the
purposes of this paper. The existence of a relation of the form (110), however, will be critically
important in Section 4.

3.4. Further Analytical Results
We now collect a number of identities which are necessary for Algorithm A, to be presented

in Section 4. Corollary 3.1 is similar to Lemma 3.2, but uses the matrix valued function '
in place of the vector valued function f to obtain an analytical expression for the function .

defined by (73).

Corollary 3.1 If, in the notation of Section 3.1, all six operators P,PAA, PBB,Q, QAA, QBB
are nonsingular, then

XIA = OA'A 2 'fl-aR), ((11)

XIB = _ -B I - o) •  (112)

with the matrices oA and aB defined by equations (76) and (79), and the matrices Al , A2
d(finEd by equations ('90) and (91).

Proof. Substituting in equations (106), (107) the functions €.4.¢B defined by (74). (75)
for the functions 77A, 77B defined by (71), (72), and the matrices aA, oI defined bY (76). (79)
for the vectors , defined by (82), (85), we obtain

B ~ ~ B. A A1 AAlB
AA = - - 0A 0 . B A B A .OB. (113)

A1.OA _ B 1 A .B A.
= - ,+.o

f . (114)

The expressions (111), (112) are now easily obtained from the equations (113), (114).
We will also require analytical expressions for the inner products 6L and 6R defined by (86).

(87) in terms of the restricted inner products 6A, 6B, bA and bB defined by (82)-(85).
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Corollary 3.2 If, in the notation of Section 3. 1, all six operators P, PAA, PBB, Q, QAA-,Q BB
are nonsingular, then

6L= JvR(t)0- (t) dt =J LV(t) aA (t) dt fbV(t B(t) dt

- 6 A +6B +aA .A- .('. 6A _b) + O .A-1 A(k .6B _6A). 16

Proof. Multiplying equation (92) by vT and v , and equation (93) by v[ and vi' we obtaini

bVL(t) OIA(t) dt = b + aA .A-1 (0,B bA_ -6B), (117)

jC t .UIB(t) dt = 6B+ OB A- (a~ A0 - 6 A), (118)

1b VR(t IA (t) dt - 6 A + Ce A-1 (aB bA _ bB) 19

jC O aIB(t) dt bB + OB A- 1 (OA. *6B - 6A). (120)

Now, expressions (115), (116) are easily obtained from (117)-(120). 0

Corollary 3.3 is similar to Corollary 3.2, but uses X, the matrix valued function defined

by (73), in place of a, the vector valued function defined by (57). While the two corollaries

concern different objects (the vectors 65, 6 R in Corollary 3.2, the matrices OL,aR inl CorollarY

3.3), their proofs are nearly identical.

Corollary 3.3 If, in the notation of Section 3.1, all six operators PPAA,FBB-Q-,QAA.QBB3

are nonsingular, then

OaL = fc VL(i) xQ) dt b VLMi - XIA(1 dt + CVL(1 - XIB( 1 ) dt

= kA A-1 (InJ 0B) + B . I- (In-0 A (121)0L ~'2 flR)L I1~f L'

jCR= vR(t)* -X(t) dt = j. VR(t) -XIA(t) dt + ./b VR(t)~ XIB(t) dt

= akA .A-1(in B) + aB A- (I-AA). (122)

Finally, combining Lemma 3.2 with the expressions (I111)-(112), we have
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Corollary 3.4 Suppose that in the notation of Section 3.1, all six operators P, PAA,'PBB.

Q,QAA,QBB are nonsingular. Suppose further that the function F is defined by the formula

F(z) = x A + a. (123)

with A E R'. Then on the interval [a, b],

F(x) = OA(x) A + 77A(x), (121)

with t E R' defined by the formula
A t,(A _ O. (A _ 6A) _ 6B). (125)

Similarly, on the interval [b, c],

F(x) =B C(X). V + 'qB(x), (126)

uith v E R' defined via the formula

A-= A1'.(A- oA •(A- 6B) - 6). (127)

Proof. Restricting (123) on the subintervals A, B of [a, c], respectively, we have

FIA = XA "\+CIA- (12S)

FIB = XIB 'A +CIB. (129)

Combining (128), (129) with (92), (93), (111), (112), we obtain

FIA = OA"- A21 "(n-OBR) • + (77A -+ O A2 1 
(OR" L R- (1))30)

s = 'A2  (I.--R)'A+(+-, OA.(Q6B--A)). 130
FB= OB - T +7B O (131)

Now. the expressions (125), (127) immediately follow from the comparisons of (124). (126) wiO h
(130). (131), respectively.

IV. Description of the Algorithms

We turn now to the construction of the fast algorithm for the solution of the inlegral
equation (57)

Pa = f

based on the apparatus developed in Section III. The main tool at our disposal is the abiliv
to merge the solutions of restricted versions of the integral equation in adjacent subintervals
(Lemma 3.2). As this suggests a recursive procedure, we begin by subdividing the wholc
interval [a, c], on which the solution to (57) is sought, into a large number of subintervals. Foi
the sake of simplicity, we assume that m is a positive integer and that Al = 2m is the number
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of subintervals created. The boundary points of the subintervals are then defined by a strictly
increasing sequence of numbers

b1, b2 ,. .. ,bM, bM+l, (132)

with b, = a and bM+1 = c. For each i = 1,...,M, we define the interval B!, via the expression

B = [bi, bi+1], (133)

and create a hierarchy of intervals B by recursively merging adjacent pairs. That is, for each
j=m- 1, 0, and i = 1,...,M,we define

~B 1 +11 U B1+1 (134)
t 2i-1 k -2i "

We will refer to each fixed I as a level. We will also refer to the two intervals B1+1 1 and B 1
as children and to the larger interval B! as a parent.

It is obvious that
Bt = [b1+(i_,).2--' Ibl+i.2-, ,  135

and that for each level 1,
21

[a,c]= UB U . (136)
t=l

4.1. Notation
Generahzing the notation of Section III, we will denote by Pi,, the restriction to the interval

B! of the integral operator P, so that

P2 ,(a)(x) = a(x) + (X). JI+2 Go(x, t) a(t) dt (137)
)b1+(,-1).2m-

-

for any o E L2(B!) n. Similarly, we will denote by Qi,t the restriction to the interval B! of the
integral operator Q, so that

Qi~l(x)(x) = X(x) + (X). Go(xt) . (t))dt (13S)
1l+(t-1).2M-1

for any X E L2(B!)nxn. For each B we will define the functions 77ij : B! - R", i.1 B' -
L(Rn;.) as the solutions of the equations

pidhi,l) = fIB:' (139)

Qidl) = V'lB, (140)

provided the operators Pi,t, Qi,l are nonsingular.
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Remark 4.1 Suppose now that the operators Pi,,,Qij are nonsingular on the interval B.
Then, due to (110), there exists At' E R' such that

o'(x) -- A,,'(x) + Oil(x) (141)

for all x E B1.

For eachI = 0,1,. .. ,m, andi= 1,2,...,21, we define the matrices oaj, a' E L(R nX)b

the formulae
,i, = b+ ,  vL (t).¢,,(t)dt, (142)

aR= VRIBi(j) ¢i(t) dt, (1:u

and the vectors 6"' , E R' by the formulae

= vj+ mB()" G) Vi,j(t) dt, (14-1)

bl+(,-l) 2
n-

1

6 = 2  lIBi() • 1,,(t) di. (1,Th

4.2. Discretization of the Restricted Integral Equations
Choosing an integer p > 1, we construct the p scaled Chebyshev nodes

7 = (&i+i - ) Cos [( 2 i ))7-j + ( bz+ I+bi) j = 1,2,.. .,p (1i

on each of the intervals B', i = 1,2,..., M. We then discretize the two integral equations (139).
(140) via a Nystr6m algorithm based on p-point Chebyshev quadrature (see. for example. [11 ).
The resulting approximations to the functions ?,, 0,j at the nodes r) will be denoted by

= 1

respectively.

Remark 4.2 It is well-known that the order of convergence of the approximations i',j. Oi.j to
the functions rij, j is p. Since all subsequent steps in the construction of an approximate
solution & to the integral equation (57) are analytic, the convergence rate of the full algorithm
depends entirely on the parameter p. For example, by using 16 scaled Chebyshev points on
each subinterval at the finest level, one obtains a sixteenth order method.
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Remark 4.3 The algorithm of this section makes extensive use of the apparatus of Chebyshev
interpolation, quadratures, composite quadratures, etc. This apparatus is quite well-developed,
and can be found in various forms in [6], [8], [10]. For a detailed description in the form most
convenient for our purposes, we refer the reader to [11].

4.3. Informal Description of the Algorithm for Linear ODEs
We begin by directly solving the two integral equations (139), (140) on each subinterval B"7

at the finest level, as discussed in the preceding subsection. Equation (141) then shows that
a restricted to B!' can be expressed as a linear combination of the two solutions 77i,m, Oi,,.
Thus, it remains only to determine the coefficients A"' E R' for each of the M subintervals
B . Fortunately, this can be done recursively. To see this, suppose that, at some coarse level
I < m - 1, we are given the coefficient A' for the subinterval B . Then Corollary 3.4 provides
formulae for the calculation of the corresponding coefficients A2 i- ,l,+l, A2 ' +l E R n for the two
child intervals Bt+ and B1+, respectively. On the coarsest level, we observe that A0'1 = 0.
i.e. the solution of equation (139) on the whole interval [a, c] is simply a.

However, the formulae (125) and (127) of Corollary 3.4 contain the matrices aL
2 i -1.1+1, 2 i,+1 , a 2i,+1 and the vectors 62i-1,1+1, 62i-1,1+1, b2i,1+1,£2i,b+1 . These quantities

are also computed recursively but in the opposite direction, namely, from the finest level to the
coarsest. They are certainly available at level m directly from the definitions (142)-(145). For
the interval B! at any coarser level I < m - 1, Corollaries 3.2 and 3.3 describe how inatrice.

il, i, I 6iL ti t
OL ,aR and vectors b' ,b' are obtained from the matrices OL, 0 R and vectors L, 6 R of the two

child intervals.
To summarize, the algorithm consists of three parts. First, a sufficiently fine subdivision

bi, b2 ,.. ., bM+l of the interval [a, c] is chosen so that, on each of the intervals Bi,m, the functions
7ijr , 0i,m can be accurately represented by a low order Chebyshev expansion. On each of the
intervals Bi,,,,, the equations (139) - (140) are solved (approximately) by direct inversion of

i i
the linear svstein arising from a Nystrdm discretization. Second, the matrices oL ,oR and
vectors 6L ,6R are computed in an upward sweep, beginning at the finest level m. Finally,
the coefficients \i,' are computed in a downward sweep, beginning at the coarsest level. The
desired function a is then recovered on each subinterval from equation (141).

The following is a more detailed description of the numerical procedure.

Algorithm A

Comment [Define the computational grid.]

Create A! = 2m subintervals on [a,c] by choosing a sequence of boundary points bl,b2,..,bA,bM+j
with b, = a and b.4+1 = c. Choose the number p of Chebyshev nodes on each interval B!" = [bi, b.+i]
for i = 1, . . ., A. Determine the locations of the scaled Chebyshev nodes ri,1 , .... , ri, on each interval
B', and evaluate the functions f, i at these nodes, obtaining fim,tP,,m.

Step 1.

Comment [Construct the approximate solutions i,, j,, on each interval Br.]
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do i= , ...,

(1) Construct the two p. n x p. n linear systems on B! obtained through a Nystr6m
discretization of the corresponding integral equation.

(2) Solve the two p. n x p . n linear systems on B by Gaussian elimination,
obtaining the values ,

end do

Step 2.

Comment [Construct the matrices OL , and vectors 6 Lm 6  on each interval B" at the finest
level.]

do i = 1,2 ...,MEvaluate the matrices rL ,OR and vectors 6, ,: using the p-point

Chebyshev quadrature formula.
end do

Step 3 (Upward Sweep).

Comment [Construct the matrices tL . o and vectors 61', 6'' for all intervals at all coars.jr 1, ,.-
I = n- 1,m- 2 ..., 0.]

do 1= ni-i, 0, -1

do i=l. 21
Compute the matrices a'" , a and vectors 61, 6' from the corresponding data in the two hiiin ev l " 2i-11+ +1 , 2._1,'1+ 1 2i,1+ I _, 2I1+1 It 62i- 1, 1+ 1b2i -1,l~ ,1+ 1, 2 +1, 620l+ 1intervals ( '+ ,o ,1+ ,' , , 1 , ), using the result-
of Corollaries 3.2 and 3.3.

end do
end do

Step 4 (Downward Sweep).

Comment [Construct the coefficient A',' for all intervals at the finest level.]

Set A, 1 = 0.

do l=0.m-I
do i=I, 21

Use Corollary 3.4 to compute the coefficients AI+ 1l2 i-1 A2tI+I
for the child intervals BtV and B1I1 from the coefficient A',' of the parewt int,,rval Th

end do
end do

Step 5.

Comment [Compute the solution a of equation (57) at the nodes ri r ,... rif for each interial a1;"
at the finest level.]
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do i=1, M
do j=l,p

Determine the values of the solution a of equation (57) at the node TJ via formula (141).
end do

end do

Step 6.

Comment [Compute the solution 4) of equation (1) from the values of a.]

Evaluate the integral (27), by using composite Chebyshev quadrature
(see Remark 4.5 below).

Remark 4.4 Inspection of the above algorithm shows that the amount of work required is of
the order O(M .p 3 . n3 ). Step 1 involves solving two (p x n) x (p x n) linear systems for each of
the Al intervals. Steps 2 - 5 require no more than O(M • p. n2 • (log p + n)) operations. Since
N' = ! -p is the total number of nodes in the discretization of the interval [a, c], we can write
the CPU tinie estimate in the form O(p. p2 .n3 ). The cost of evaluating the solution 4> of the
differential equation (55) from the integral representation (27) is O(N • logp • n) (see Remark
4.5 below).

Remark 4.5 The final s' 2p in the algorithm involves the evaluation of an integral of the form
(27) at each of the Chebyshev nodes r< on each subinterval B'". namely

.) = Go(r, 1). a(t)dt. 
(147)

If these integrals were calculated independently for each T"<. the amount of work required
would be of the form O(N 2 . n), and would dominate the construction of the function 4). In
fact, this is unnecessary, for we may write

l(7,) = T(r,)' If Lt) M a)dt + ] rrLU) cr(t) di

+ / ~, (t).a(t)dt + R(t) a(t)dt ( 1h',

where we have used the representation (22) and the fact that r/ lies in the interval 13;

[b,,b,+1 ]. Step 6 can then be written in detail as follows:

Step 6 (a).

Comment [Precompute the integrals of tL a and v,. a on each subinterval B' by Chebyshev quadra-
ture. These integrals will be denoted IL and 1,, respectively]
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do i=1, M
I,(B,) = 1 , 1 VL (t) a(t)dt.

1R(B') = fb., Vn(t) T(l) di.
end do

Step 6 (b).

Comment [March across interval from a to c, computing 4 at each node in the discretization. The
variables J and JR will be used to accumulate the integrals fj vL(), o+)dt and l+ VR(t) a(t)dr,
respectively.

3et JR = E", I(B-).
Set JL = 0.

do i=1, M
do j=1,p

For each Ti compute

end do
JL = J. + IL(B')

end do

Thus, the amount of work required in Step 6(a) is O(N • n). The integrals required on each
subinterval in Step 6 (b) can be computed by spectral integration (see, for example, (11]) using
O(p.logp. n) work. The total cost is therefore of the order O(M .p.logp. n) or O(N logip. n).

4.4. Informal Description of the Algorithm for Nonlinear ODEs
The nonlinear algorithm is a straightforward application of the linear algorithm described in

the previous subsection. The solution is obtained using Newton's method for nonlinear ODEs:
each Newton iterate is obtained by solving the linearized problem (50) via the algorithm of the
preceding subsection.

As with Algorithm A, we subdivide the interval (a, c] into a large number of subintervals .1:
for simplicity we assume 11 = 2' , with m a positive integer. As before the boundary points
b. b2....- .bNl,+ iie defined by (132), and the intervals B ,(1 < I < 7n),(1 < i < 21) by
(1:33).

On the kt' step of the Newton process, Algorithm A is applied to the integral equation

pk6 k = 9k, (149)

with the operator pk : (L 2 [a,c])' - (L 2[a,c])' defined by the formula

Pk('k)(X) = 6k(X) + i )k() [GO(X,t) 6,(t) dt,
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with 6k the solution of the integral equation (50), Rk given by (51), and 9k given by (52). The

integral equations (139), (140) now assume the form

P* k(7)= 9klBI, (151)

i) k IB', (152)

with the operator P : (L[a,c])n "* (L 2 [a, c]) defined by the formula

Pkl(bk)(X) = bk(X) + Qk(T) " jb,+,,,i_ Go(x, t) 6 k(1) dt, (153)

and the operator Q': (L 2 [ac])nxn (L 2 [a,c])" 'x defired via the formula

X= x() + flk(x) Go(x,t) .x(t) dt. (1,1)

Once Algorithm A has computed the solution bk to (149), we obtain aCk+ via (11). and (k+
via (49).

The nonlinear algorithm requires an initial approximation (0.V to the solution P and its
derivative 4,' of equation (5), and we assume that both are supplied by the calling program.
au is obtained from 40, ) via the identity

aO() = VOW + pO(x) • o(x). (15)

The procedure is terminated when the stopping criterion

i1kll2 < (156)

is satisfied, with c provided by the calling program. Since Newton's method frequently fails
to converge, the calling program also permits a certain maximum number of iteratie'Is, after
which the algorithm stops, signalling failure.

The following is a more detailed description of the !umerical procedure.

Algorithm B

Comment [Define the computational grid.]

Create 11 = 2"' subintervals on [a, c] by choosing a sequence of boundary points b, b ... . .., , +I
with bi = a and bM+1 = c. Choose the number p of Chebyshee nodes on each interval B" = [b,.b,+3
for i = .... , i. Determine the locations of the scaled Chebyshev nodes r,1 ,7,..., r, on each interval
W", and use the initial approximations (O, V'o to evaluate the initial approximations 4. a at these nodt..
obtaining . a,.m. Choose tolerance c.

Comment [Use Algorithm A to compute Newton iterates Dk, obtaining the solution 4, of equation (5).]
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repeat
(1) Set 4P= 6, = a.

(2) Evaluate the functions f2, at each of the scaled Chebyshev nodes r,1 , r2,... r on each
interval B", obtaining S(s,,), (i,).

(3) Apply Algorithm A to the discretized form of (50), obtaining 6.

(4) Set a = &+ .

(5) Compute the solution t of equation (49) from the values of a, by using
composite Chebyshev quadrature (see Step 6 of Algorithm A and Remark 4.5 above).

until 116o112/1Co112 <f

V. Numerical Results

FORTRAN programs have been written implementing both algorithms described in the
preceding section. In this section, we discuss several details of our implementation, and demon-
strate the performance of the scheme with numerical examples.

The following technical details of our implementation appear to be worth mentioning.

1. The algorithms described in the preceding section require that the number M of elementary
subintervals on the interval [a, c] be a power of 2. Clearly, this is not an essential limitation
and it can be removed by simple bookkeeping changes. In the version of the algorithms used
for numerical experiments, these changes were made.

2. Algorithm A depends for its stability on the equations (139), (140) having unique solutions
for all subintervals B (I = 0,1,...,M, i = 1,...,21), while Algorithm B depends on (151).
(152) having unique solutions for all subintervals B? and for all Newton iterates k. It is easy
to construct examples for which these conditions are violated, even though equation (57) or
equation (32) has a unique solution. In such cases, a different subdivision of the interval [a. cl
can be attempted, such that none of the subintervals B of the new subdivision coincides with
an interval of the original one. This procedure can be viewed as a form of pivoting, and it is
easy to show that it is always possible to make it work. It has not been implemented at this
point, and we have not so far encountered a need for it.

3. We have, however, implemented a crude scheme for detecting high condition numbers in
the algorithms. These can occur in two places: in the solution of the linear systems on each of
the finest level subintervals (Step 1 of Algorithm A), and while computing coefficients Ai.-h
defined by (90), (91) used when merging solutions on two consecutive subintervals (Step 3 of
Algorithm A). In both cases, the condition number of the system being solved is estimated
in the process of solution (we use a standard LINPACK routine), and the largest of these is
returned to the user. When an extremely large condition number is detected by the LINPAC,
routine, the resulting solution of the original ODE should be viewed as suspect. It is easy
to show that when the differential operator is positive definite, this cannot happen. A more
complete treatment of this subject requires further study.
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i'l iI
4. In the upward sweep (Step 3) of Algorithm A, we evaluate the matrices aL , a for all
intervals Bi, and use these matrices to evaluate the vectors 6L , 6R , the vectors ,"', and,
finally, the solution a of the integral equation (57). But the matrices aL a R do not depend
on the right-hand side f of equation (57), and it is easy to see that their evaluation accounts
for more than 90% of the work. Therefore, whenever the equation (57) has to be solved withli
multiple right-hand sides, we can precompute the matrices aL1 , a., and store them, saving 90W
of the cost of the evaluation of subsequent solutions.

The algorithms of this paper have been applied to a variety of problems. Seven experiments
are described below, and their results are summarized in Tables 1-18.

Tables 1-13 are associated with examples for which analytic solutions are available. In each
of these tables, the first column contains the total number N of nodes in the discretization of
the interval [a, c]. The second column contains the relative L' error of the numerical solution
as compared with the analytically obtained one at 5000 equispaced points within the interval
[a, c], where Chebyshev interpolation has been used to evaluate the numerical solution at each
of the 5000 points. The third column contains the maximum absolute error obtained at any of
the 5000 points. Columns four and five contain the same information for the derivative of the
solution (i.e. its relative L 2 and absolute L' errors respectively). The sixth column contains
the CPU time required to solve the problem, excluding the time used to evaluate the solution
at 5000 equispaced points, where in all cases the times are given for a SUN SPARCstation
1 computer. Tables 11-13, associated with a nonlinear example, have in addition a seventh
column which contains the number of Newton steps taken before the stopping criterion (156)
has been satisfied, with E = 10- 1° .

Tables 14-18 are associated with examples for which we did not have analytic solutions. Il
these examples, we compare each numerical solution with p Chebyshev nodes and n subintervals
against the solution with p Chebyshev nodes and 2 . n subintervals. In each of these tables, the
first column contains the total number N of nodes in the discretization of the interval [a, c]. The
second column contains the relative L 2 error of the numerical solution as compared with the
numerical solution with twice the number of subintervals, where the comparison is made at each
of 5000 equispaced points in the interval [a,c], and where Chebyshev interpolation has been
used to evaluate the numerical solution at each of the 5000 points. The third column contaihl
the maximum absolute error obtained at any of the 5000 points. Columns four and five contain
the relative L 2 and absolute L' errors, respectively, for the derivative of the solution. The
sixth column contains the SPARCstation CPU time required to solve the problem, excluding
the time used to evaluate the solution at 5000 equispace points. Tables 16-18, associated wit li
a nonlinear example, have in addition a seventh column which contains the number of Newton
steps taken before the stopping criterion (156) has been satisfied, with c = 10' .

Remark 5.1 In Examples 3-4 below, we solve boundary value problems of order 2; in Example
5, we solve a problem of order 4; and in Example 7 we solve a system consisting of four
equations of order 2 and two equations of order 4. In all these cases, the problems were
reduced to canonical first order systems (see, for example, [4]), with the latter solved by means
of algorithms A or B of the preceding section, as appropriate.
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n E2()t) ______ E2 (4,') E0(V') t (sec.)
16 0.962 x100  0.685 xlO1  0.261 xlO' 0.673 x104  0.150 x106

32 0.244 x101 0.216 x10 2  0.108 x10 2  0.169 x105  0.300 x100

64 0.700 x10 - 1  0.272 x101 0.200 x101 0.261 x10 4  0.560 x100

128 0.255 x10-1  0.125 x10 1  0.754 x100  0.125 x10 4  0.108 xl0
256 0.667 x10- 2  0.342 x10 °  0.198 x100  0.342 x10 3  0.214 xl01
512 0.805 x 10- 3  0.536 x10 - 1  0.238 x 10- ' 0.536 X 102  0.428 x 101
1024 0.330 x10- 4  0.291 x10- 2  0.977 x10- 3  0.291 x101 0.646 x101
2048 0.482 x10- 6  0.529 x10 - 4  0.143 x10- 4  0.529 xl0 1  0.168 x102

4096 0.316 x10- 8  0.476 x10- 6  0.935 x10- 7  0.476 x10- 3  0.337 x10 2

8192 0.112 x10 - 10  0.170 x10-8  0.331 x10- 9  0.170 xl0- 1 0.670 x10 2

16384 0.115 xl0- 1' 0.113 x10 - 10  0.264 x10 - 11 0.140 x10- 7 0.137 x10 3

Table 1: Numerical results for Example 1, p = 8.

Example 1 This example is taken from [2], where it is introduced as a stiff problem. Th
equation to be solved is given by the formulae

0'(x)-998.O1(x)- 1998.0 2(x) = 2.x, (]57)

¢'(X) + 999. €1(x) + 1999.0 2(x) = X,(.)

subject to the boundary conditions

=1(0) 1, (159)

02(1) = -6. e- 1 + 5. e- 0o + .004 .(.999 +.001 . e-1'). (160)

We use the results of Theorem 2.3 to reduce the first order system (157) - (160) to one subject
to homogeneous boundary conditions

01(0)= 0, (161)

2(1) = 0. (12)

We apply Algorithm A to this system using equispaced subintervals, with the number of Cheby-
shev nodes p = 8,16,24. For this experiment, the background Green's function is chosen to
correspond to the equation

'()=0, (1

subject to boundary conditions (161)-(162). The results of this experiment are presented iII
Tables 1-3.

Example 2 We solve the problem (157) - (160) defined in Example 1, but using an alternate
division of the subintervals. Since the solution of this problem has a fairly sharp boundar.
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n E2(t) E__(_) E2(41) E-(V) t (sec.)

16 0.567 x100  0.436 x10 1  0.916 x10u 0.397 x10 4  0.310 xIO°

32 0.251 xl01 0.192 x102  0.673 xlO' 0.175 x10 5  0.540 x100

64 0.340 x10- ' 0.139 x10' 0.859 x10 °  0.129 x10 4  0.950 x100

128 0.744 x10- 2  0.344 x100  0.220 x10 °  0.344 x10 3  0.179 xl01
256 0.798 x 10- 3  0.389 x 10- 1  0.236 x10 - 1 0.389 x102  0.345 x 10'
512 0.164 x10 - 4  0.930 x10- 2  0.486 x10- 3  0.930 x10 0  0.686 x10'
1024 0.364 x10- 7  0.243 x10- 5  0.108 x10- 5  0.243 x10- 2 0.137 x10 2

2048 0.992 x10- 11  0.817 x10 - 9  0.294 x10- 9  0.817 x10 - 6 0.274 x10 2

4096 0.942 x10- 13 0.776 x10- 1 2 0.146 x10 - 12  0.753 x10- 9 0.532 x10 2

8192 0.214 x10- 12 0.164 xI0-1 1 0.328 x0 - 1'2  0.164 x10- 8 0.107 x10 3

Table 2: Numerical results for Example 1, p = 16.

71 E2(4 ) E-C( P) E2(VI) Eo"(V))  t (sec.)

24 0.511 x10 0  0.373 x10 1  0.752 xl0°  0.358 x10 4  0.690 x100

48 0.251 x10 0  0.244 x10 1  0.112 xl01  0.200 x10 4  0.116 x10 1

96 0.591 x10- 2  0.240 xl0°  0.175 x10 0  0.240 X10 3  0.209 X10'
192 0.496 X10 - 3  0.214 X10 - 1  0.147 x10- 1 0.214 X10 2  0.387 x101
384 0.546 x10 - 5  0.258 x10 - 3  0.162 x10 - 3  0.258 x10 °  0.765 X10'
768 0.274 x10- 8 0.129 x10 - 6  0.811 x10- 7  0.129 X<10 - 3 0.147 x10 2

1536 0.105 xIO- 12 0.335 X10 1' 0.142 x10 -11  0.256 x10 - 8 0.295 X10 2

3072 0.663 X10 - 13 0.624 xI0- 12 0.125 xl0-1 2 0.621 x10 - 9 0.578 x10 2

Table 3: Numerical results for Example 1, p = 24.
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'__ _ _ __ E2(V) Ei( )  t (sec.)
16 0.567 x100  0.436 x10 1  0.916 x100  0.397 X 104  0.310 x1O0
32 0.251 x101 0.192 x10 2  0.673 xl01 0.175 x10 5  0.540 x10 °

64 0.790 x10- 2  0.360 x100  0.222 x10 °  0.345 x10 3  0.950 x10 0

128 0.992 x10 - 1 1  0.818 x10 - 9  0.294 x10 - 9  0.816 X10 - 6  0.177 x101
256 0.244 x10 - 12 0.261 x10- 11 0.525 xl0- 12 0.228 x10 - 8 0.352 xl0'
512 0.243 x10- 1 2 0.261 xl0-  0.525 x10- 12 0.229 x10 -8  0.681 xl0

Table 4: Numerical results for Example 2, p = 16.

n E 2( .1) E -°(4 ) E ( V') E o( - ' )  t (sec.)

24 0.511 x100  0.373 xl01 0.752 X10 0  0.358 x10 4  0.710 x100

48 0.251 x100  0.244 x10 1  0.112 xl01 0.200 x10 4  0.117 x10 1

96 0.496 xl0 - 3  0.214 x10 - 1  0.147 x10- 1  0.214 x10 2  0.209 x101
192 0.293 X10 - 1 2 0.227 x10 - 1  0.507 xI0- 2 0.229 x10 - 8  0.387 x10'
3S4 0.294 x10 - 12 0.227 x10 - n  0.509 X10 - 12 0.230 x10- 8  0.75S x101

Table 5: Numerical results for Example 2, p = 24.

layer near the left end of the interval [0,1], we construct the intervals B7, = [b,,b,+1] via Ihe
fornuila

b= 0

= -) for i = 2,...,M + 1 , (164)

so that they become progressively smaller near the left end of the interval [0. 1]. As in Exampl'
1, we reduce the problem (157)- (160) to a first order system subject to homogeneous bound-
ary conditions (161)-(162). Algorithm A has been applied to this problem using the G,,cn's
function corresponding to the equation (163) subject to boundary conditions (161)-(162). and
with the number of Chebyshev nodes p = 16 and 24. The results of this experiment appear in
Tables 4-5. and are most satisfactory.

Example 3 This example is taken from [15], where it is described as a reasonably difficult oi,
due to the presence of rapidly growing solutions of the corresponding homogeneous equatiOh.
The equation to be solved is

" + 400- = -400. cos2 (7r, x) - 2. 7r2 . cos(2- 7.r x), (1(;5)

subject to the boundary conditions

0(0) = 0() = 0.
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n E2(4) E '(E ) E '(V) t (sec.)
8 0.236 x10 °  0.457 xl0 0.210 x100  0.102 xl0 0.110 xlO°

16 0.722 x10- 2  0.114 X10 0  0.733 x10- 2  0.381 x10 1  0.190 X10 0

32 0.245 x10 - 3  0.331 xl0- 2  0.258 x10- 3  0.970 x10 - 1  0.380 x10 0

64 0.220 x10- 5  0.410 xl0- 4  0.289 x10- 5  0.112 x10 - 2  0.720 x10 0

128 0.988 x10- 8  0.255 x10- 6  0.185 x10- 7  0.788 x10- 5  0.139 X10'
256 0.365 x10 -10  0.115 x10- 8  0.850 x10 - 1  0.417 x10- 7  0.280 x10 1

512 0.137 x10 - 1  0.464 xlO-" 0.346 x10- 2  0.192 x10- 7  0.551 xlO'

1024 0.403 x10 - 14  0.142 x10 - 12  0.755x10 - 1 4  0.728 X10 - 1 1 0.109 x10 2

2048 0.124 x10- 13  0.188 x10- 1 2  0.641 xl0- 14  0.381 x10 - 11 0.222 xl02

Table 6: Numerical results for Example 3, p = 8.

n E2(D)E--) 'E2.,) C-(P )  t(sce.)
16 0.125 xl0- 3  0.255 xlO- 2  0.119 X10 - 3  0.524 xl0- 1  0.360 x×10
32 0.290 X 10 - 7  0.587 X 10 - 6  0.326 X 10- 7  0.151 x 10- 4  0.650 x 100

64 0.555 x10- 11 0.867 x10 - 10  0.568 x10 - 11  0.207 x10- 8  0.119 xl01
128 0.217 xl0- 14 0.391 xl0 - 13 0.204 X10 - 14 0.131 x10 -1 1 0.231 x10'
256 0.262 xl0-1 4 0.429 x10 - 13 0.315 x10 - 14  0.153 x10- 1  0.454 xl0

Table 7: Numerical results for Example 3, p = 16.

We reduce the problem (165), (166) to a first order system, and apply Algorithm A to this
system using equispaced subintervals, with the number of Chebyshev nodes p = 8, 16 and 24.
For this experiment, the background Green's function is chosen to correspond to the equation

(X)+ 0 -1 ).(x)= (167),(x) -1 0)

subject to boundary conditions (166). The results of this experiment are presented in Tables
6-8.

Example 4 We solve the problem (165), (166) defined in Example 3, but we use the back-
ground Green's function corresponding to the equation

'(X) = 0, (16S)

subject to boundary conditions (166). We reduce the problem (165), (166) to a first order
system, and then use the results of Theorem 2.9 to express t by the formula

t(x) = T(x) r(),
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n E2(E( E2(4') E-°(4V) I (sec.)
24 0.164 x10- 8  0.336 x10- 7  0.156 xl0 -8  0.676 x10-6  0.760 xl00

48 0.338 Xlo - 14  0.568 x10 -13  0.345 XIO- 14  0.188 xI0 - 1 1 0.136 xlO'
96 0.264 xl0 - 14  0.853 xl0 - 13  0.273x 10- 14  0.261 X10 - 1' 0.257 x10'

Table 8: Numerical results for Example 3, p = 24.

with IQ : [0, 1] -- L(R'x 2 ) given by the formula

qW-X X (169)

and r : [a, c] - R' the solution to the equation

IF'(x) + IQ- I(X). (IQ'(X) + p(x). (X)). IF(X) = _(X).-f(X), (170)

subject to boundary conditions

(10 ) T~(a) -r(a) + ( 0 0 ~) c)=0(1)

with the matrix valued function p defined by the formula

P()= ( 40 0 -0)0 (172)

and the vector valued function f defined via the formula

f(X)= ( 400. cos2(ir . x) _ 2. r2 .cos(2. r . x) 1. 173)

Ve apply Algorithm A to this problem using equispaced subintervals, with the number of
Chebyshev nodes p = 16 and 24. The results of this experiment are presented in Tables 9-10.

Example 5 We consider a system of Jacobian elliptic functions sn, cn, dn : [0, 10. K] - R
(see, for example. [1]) which are solutions to the equations

sn'(x) cn(x) . dn(z), 17-4)
cn'(x) -sn(x) . dn(x), (175)

dn'(x) -m.sn(x).cn(x), 176)

with m = in our experiments, subject to the boundary conditions

sn(o) = 0, (177)
cn(O) = 1, (178)

dn(40.K) = 1, (179)

32



n E 2(I) E-(,D) E 2(.6) E-(4,') t (sec.)
16 0.946 xl0 4  0.193 x10- 2  0.887 xl0 4  0.412 x10 - 1  0.320 x10 0

32 0.281 X10- 7  0.567 x10- 6  0.307 X10 - 7  0.145 x10- 4  0.530 x10 0

64 0.517 x10 -1 ' 0.833 x10- 0°  0.527 xl0"-  0.198 x10- " 0.960 x10 0

128 0.106 x10 - 14  0.355 xl0 - 13 0.139 xl0- 14  0.796 Xl0 - 12 0.176 xl01
256 0.977 xl0-  0.391 xl0- 13 0.140 x10 - 14  0.853 x10- 12  0.347 x10 1

Table 9: Numerical results for Example 4, p = 16.

,n E2(f) E- (4) E2(V )  E00(,V )  t (sec.)

24 0.113 xl0 - 8  0.232 x10- 7  0.106 xl0-  0.484 x10- 6  0.700 x10 0

48 0.470 x10 - 14  0.711 X10 - 1 3  0.371 X10 - 14 0.176 x10 - 11 0.116 x101
96 0.180 X10- 14  0.391 X10 - 1 3  0.187x10- 14  0.909 Xl - 12 0.207 x10

Table 10: Numerical results for Example 4, p = 24.

with K given by the expression

12=fo dO (70
J /1 - . sin 2 0

We use for an initial guess the solution to (176), (179) for m = 0, which is defined by the
formulae

sn(x) = sin (2- .x), (181)

cn(x) = cos (-K.x), (182)

dn(x) = 1. (183)

We.reduce the problem (165), (166) to a first order system, and then use the resuilt., of
Theorem 2.4 to reduce this system to one subject to the homogeneous boundary conditiwo1-

sn(o) = 0, (18.1)
cn(o) = 0, (18.)

dn(40.K) = 0. (186)

We then apply Algorithm B to this system using equispaced subintervals, with the number of
Chebyshev nodes p = 8,16 and 32. For this experiment, the background Green's function is
chosen to correspond to the equation

')= 0,
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n E 2(4) E-(4) E 2(') Eoct(V) t (sec.) Steps
128 0.211 x10 - 1  0.551 x10 - 1  0.333 x10- 1 0.620 x10-' 0.167 x102  9
256 0.158 x10- 2  0.416 x10- 2  0.228 x10- 2  0.430 x10-2  0.258 x10 2  7
512 0.849 xlO- s  0.226 x10- 4  0.123 x10- 4  0.240 x10- 4  0.439 x10 2  6
1024 0.106 X10 - 7  0.330 X10 - 7  0.180x10- 7  0.460 X10- 7  0.883 x10 2  6
2048 0.313 x10- ' 0  0.984 x10- '0  0.599 x10- '( 0.150 x10- 9  0.175 x10 3  6
4096 0.147 x10 - 1 2  0.469 x10- 2  0.264 xI0- 12 0.674 x10- 12 0.348 X10 3  6

Table 11: Numerical results for Example 5, p = 8.

E2(4) E-(I,) E 2 (V) E-(-,') t (ac.) Step ,
64 0.162 x10 °  0.505 x10 0  0.244 X10 0  0.546 xl 0 . 17 7 x10 10
128 0.422 x10- 1 0.108 x10 0  0.612 x10 - 1  0.113 x10 0  0.246 x102  7
256 0.181 X10- 3  0.476 x10- 3  0.268 X10- 3  0.491 x10- 3  0.409 x10 2  6
512 0.441 X10- 7  0.120 X10 - 6  0.672 xl0- 7  0.159 X10- 6  0.851 X10 2  (5
1024 0.425 Xl0- 12 0.125 X10- 11 0.115 xl0 - 11  0.293 xl0 -1  0.164 X10 3  6
204S 0.115 XI0- 12 0.317 XI0 - 12 0.164 X10 - 2  0.317 XI0 - 12 0.324 X10 3  6
4096 0.569 X10 - 13 0.152 xl0- 1 2  0.814 Xl0- 1 3 0.154 xlo- 12 0.653 X10 3  6

Table 12: Numerical results for Example 5, p = 16.

subject to boundary conditions (184) - (186). The results of this experiment are presellted ii
Tables 11-13.

Example 6 This example is taken from [14]. Its purpose is to demonstrate the performance
of the method when the equation to be solved contains fourth order derivatives. The deflection,
of a beam under a uniform load q, with the beam built in at the left end (x = 0) azd Simply
supported at the right end, is given by the formula

k qy 'x) + E--7] IyWx = E. I'

subject to the boundary conditions

y(O) = y'(0) = y(L) = y"(L) = 0, (1s

with k the force per unit deflection per unit length of beam, and E • I the flexural rigidi y of
the beam. The values of the constants used are

L = 1.2 x 102 in., (1,9)

k = 2.604 X 103 psi, (190)
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n E2(.t) E(_) E 2 (4b') E( ')  f (sec.) Steps

256 0.148 X10-3  0.388 x10-3  0.215 x10 - 3  0.411 X 10- 3  0.163 X10 3  6
512 0.124 xlO-9  0.395 x1O- 9  0.961 x10 - 9  0.186 x10-  0.322 x10 3  6
1024 0.450 xl0 - 2  0.119 x10-1  0.643 xl0- 12 0.119 x10 - 11 0.632 x10 3  6
2048 0.266 X0 - 12  0.703 x10 - 12  0.381 XI0 - 12  0.703 XI0 - 12  0.126 X10 4  6

Table 13: Numerical results for Example 5, p = 32.

q = 4.34 x 104 lbs/in., (191)

E = 3.0x107 psi, (192)

I = 3.0x 103 in.4, (193)

(see [14], p. 174). The L2 norm of y, the solution to (188), is approximately 106 times larger
than the L2 norm of y"". Combined with the high number of derivatives in (187), this tends to
present difficulties for finite difference methods. We reduce the problem (187), (188) to a first
order system, and then use the results of Theorem 2.9 to express 4P by the formula

4)(X) = T11(x) ),

with T(x) :[0, L] - L(R 4 x4 ) given by the formula

L- 0 . 0
0 0%P(X)= 0 1 0 0o14

0 0 0 1 (194)
- 1 0 1 0

and F : [a, c] -* R' the solution to the equation

r'(X) + 'I1 (x) . (P'(x) + p(X) . (x)). F(x) = T-1(x) • f(x), (195)

subject to boundary conditions

(1000 (0 a 0 00
0 1 0 0 0 0 0 0 . (196)
0 0 0 ( -a).F(a)+ 0 0 1 0

0 0 0 0 1 0 0 0

with the matrix valued function p defined by the formula
0 -1 0 0

0 0 -1 0 (197)50 0 0 -1
F./ 0 0 0
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n E2(4) E-($) E-( 'V) t (see.)

4 0.115 x10 °  0.672 xi0 -  0.277 xl0 -  0.433 X10 - 3  0.110 XI0 °

8 0.755 x10 - 2 0.506 x10 - 2 0.215 X10- 2  0.426 X10 - 4  0.220 X10 0

16 0.474 x10- 3  0.369 x10- 3  0.141 X<10 - 3  0.317 x10 - 5  0.400 xl0°

32 0.269 x10- 4 0.249 x10- 4 0.891 X10 -5 0.212 x10 - 6  0.780 x10 0

64 0.185 x10 - 5  0.162 x10-5  0.554 X>10 - 6  0.137x10 - 7  0.153 x10'

128 0.117 x10- 6  0.103 x10 - 6  0.338 X10 - 7  0.866x10 - 9  0.303 x10

256 0.891 x10-8  0.652 x10-8  0.223 x10 -8  0.539x10 - 1 0  0.603 x10'

512 0.306 x10-8 0.170 x10 - 8  0.338 x10 - 8  0.416x10 - ' 0  0.120 x10 2

Table 14: Numerical results for Example 6, p = 4.

n E(4) ( E2(, ' ) 'E"(,) t (see.)

8 0.130 x10-5  0.816 x10 6 0.688 x0 0.139 xO-' 0.280 x10)
16 0.792 xl0 -  0.510 xl0-  0.101 xl0- 7  0.149 xI0 - 9  0.530 x10 0

32 0.465 xl0 -  0.235 x10-s  0.468 X10 - 8  0.565 x10- 1  0.105 x101

64 0.916 x10- s  0.463 x10-8  0.927 x10 -8 0.111x10 - 9  0.201 x10 1

Table 15: Numerical results for Example 6, p = S.

and the vector valued function f defined via the formula

P(X) = o 0 (1)

We apply Algorithm A to this problem using equispace subintervals, with the numlber of

Chebyshev nodes p = 4 and 8. For this experiment the background Green's function is chosei

to correspond to the equation
VI(X) = 0,

subject to boundary conditions (188). The results of this experiment are presented in lable'S

14-15.

Example 7 This example is taken from [13], and was developed in cooperation with the author

of [131. The problem is a system of six nonlinear equations with inhomogeneous boundary
conditions, and is described in detail in Appendix A. Since 2 of the ODEs are fourth order.

and 4 are second order, the problem reduces to a system of 16 first order nonlinear equations.
The 2 fourth order ODEs have in their fourth derivatives a boundary layer of order 10' at the

left end of the interval.
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n E 2 (4 ) EEO() E_(_ )  E°(V') t (sec.) Steps
80 0.697 xl0 -  0.516 x10 2  0.118x 10 0.415 X 04 0.249 x10 3  6
160 0.854 xl0- 2  0.773 x103 0.167 xl0'- 0.790 x10 3  0.542 x10 3  6
320 0.795 X10 - 3  0.952 x10 0  0.177 X10- 2  0.111 X10 3  0.105 X10 4  6
640 0.589 XI0- 4  0.917 x10'- 0.143 X10 - 3  0.114 X10 2  0.205 x10 4  6

Table 16: Numerical results for Example 7, p = 4.

n E 2 (,p) E-'(() E 2 (.p ') E'1(1I0') t (sec.) Steps
80 0.814 x10 - 2  0.686 xl0' 0.151x10 - 1  0.667 x10 3  0.633 x10 3  6
160 0.409 xlO- 2  0.380 xl0' 0.871 x10- 3  0.454 x10 2  0.107 x10 4  6
320 0.884 xl0- 5  0.977 X10 - 2 0.238 x10- 4  0.140 xl 1  0.206 x10 4  6
640 0.930 x10- 7  0.130 X10 - 3 0.312 x10 - 6  0.213 x10- 1  0.396 x10 4  6

Table 17: Numerical results for Example 7, p = S.

We use for an initial guess the solution to the problem for n = 40,p = 4. We appl y
Algorithm B to this system using equispaced subintervals, with the number of Clihy>}v
nodes p = 4,8, and 16. The results of this experiment are presented in Tables 16-IS.

The following observations can be made from Tables 1 - 18, and are corroborated by our
more extensive experiments.

1. The practical convergence rate of the method is consistent with the theoretical one. for
larger p, the exact numerical verification of the order of convergence tends to be difficult, since
the precision of calculations is exhausted before the behavior of the scheme becomes asymptotic.
However, this is often encountered when dealing with rapidly convergent algorithms.

2. For small-scale problems and large p, the algorithm produces essentially exact results with
a small number of nodes. For large-scale problems, double precision accuracy is achieved itt
approximately 20 nodes per wavelength with p = 20, at 12 nodes per wavelength with p = 2-L

,, E 2 (D) E-(P) E 2 (4') EO(') t (scc.) Steps
80 0.301 x10 - 3  0.269 x10 °  0.673x10- 3  0.338 x10 2  0.155 x10 4  6
160 0.419 xlO- 5  0.393 x10- 2  0.106 Xl0- 4  0.557 xl0°  0.291 x10- 6
320 0.114 x10 - 7  0.115 x10- 4  0.378 X10- 7  0.199 x10- 2  0.565 x10 4  6
640 0.624 x0 - " 0.728 xl0 - , 0.287 x10-  0.158 x10-5  0.112 xl0 5  6

Table 18: Numerical results for Example 7, p = 16.
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and at 10 nodes per wavelength with p = 32. The optimal timings are achieved at p betweeji
24 and 32 (provided that about 10 - 12 digits of accuracy are desired).

3. The condition number of a Nystrbm discretization of a second kind integral equation iS
asymptotically bounded, and our results reflect this fact. The relatively poor accuracy (S -
11 digits) obtained in Examples 6 and 7 is due to the ill-conditioning of the original ODE, as
opposed to that of the numerical scheme used.

4. The algorithm is completely indifferent to the stiffness near the left end of the interval [0, 1]
of equations (157), (158) in Examples i-2.

5. It is easy to use the algorithm in an adaptive manner, as demonstrated in Example 2.
However, a fully adaptive version of the scheme has not been implemented. The intervals B"'

in Examplr 2 were provided by the calling program (as opposed to having been constructed by
the algoritim itself).

6. The numerical advantages of one background Green's function over another tend to be minor.
as indicated in Examples 3-4. However, using the Green's function given in Lemma 2.2 do(
result in a slightly faster algorithm. This is because this Green's function is constant in each
of the intervals (. < t), (x > 1), which provides in Step 2 of Algorithm A faster evaluationt of
the matrices o"',. o" given by equations (142)-(143) and vectors 6., 6 "m given by equations
(144, (145). and provides in Step 6 a faster evaluation of the solution 4 of equation (27).

7. The algorithm cait solve systems of high order equations with no numerical difficulty. as
demonstrated by Examples 6-7.

VI. Conclusions

An algorithm has been presented for the solution of two-point boundary value problems of
ordinary differential equations. The algorithm is based on reducing the differential equation to
a second kind integral equation, with the subsequent solution of the latter via a Nystr6m type
scheme. It has CPU time requirements proportional to N.p 2 .n 3 with N the number of nodes in
the discretization of the interval of definition of the equation, p the desired order of convergenc'
of the scheme, and n the number of equations in the first order system. The metihod does not

involve the solution of linear systems with large condition numbers, permits the use of schemes
with extremely high orders of convergence, and is quite insensitive to boundary av,'rs or to
eld-porint si gu arities in thje coefficients of the differential equation.

The algorithm has been combined with Newton's method, resulting in a schemec for the
solution of boundary value problems for nonlinear ODEs. In this case, each Newton itcrat, is
expressed as the solution of a linear second kind integral equation; the analytical and ilm,,rical
advantages of integral equations are thus obtained for nonlinear boundary va!ue problem..
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Appendix A.
Numerical Solution of Square-Cell Convection with Strongly Variable Viscosity

This problem is introduced in [13] as a model for square-cell convection with stroligly
variable viscosity. The model is used to examine the influence of temperature-dependent and
pressure-dependent viscosity on convective heat transfer and surface motion. The problem is
given by the system of six coupled, nonlinear equations

(4 R ( O,(x) + 4 2. '(x) - a4. 91(x) + (6( ). T"(x) (19)
-2 " "'(x) (x))- 2. a -'(x) '(x) - 2. 02 _0() ()

- .. "(x)- 1 (x) +-. a 1(x) P(x))) + 2 .y. (1(x) • (x)
+ 2 ( x) '( + .. .. - • (x) + • x) -O (x) -2 2 0'.(x) 0,(x)- 3 (. 2 0 )

22

- 2. a. 61"(x). 02(x)) + 4. ( '(x)- 0'(x) + 2. - "(x) . 0' (x) + (x). 02(x)

- 3. a. 'O(x). 02(x) - 4. k -0(x). 9 (x))) / (4. (1 - '(x)).

€(x) (2.-R.02(X) + 2.-(4 -a 2 0 (x) -4.-a 4 2x + .0( ) x (200)
- 2. 2"(k.) . + ) - 4.x X. o'(x). 4. . . 9)( .) . ((.)

+ 2., .. T"(x) • 02(x) + 4. .a4 P(3.). T(X) + 0"(X) • O"(X) + 2. 0' ' ( ).
+0 ¢ (x).- O,(x) - 4. - 2. 0/ (x). o'(x) - 3. - .a' (X). -0(X)
+ a 2 . ( ( ) .- '0( x ) + 2 .- a 2 .0 ,(X ) ._ 0 1 (X ) ) ) + 7 . - ,'(X ) -_ ' 0 1

-- 2."I (x) •
- 0'(x ) - (x). - 1(x ) +r 4" -, a - '(x). - 1(3 ) +r 6. - 2 a 2 "1 (.) )

/ (2. (1 - - -. (x))),

T"~ ~ (6(x ('(). 01 (XJ + 0 1 (X) . 01(rW + . '(X) 62 (x)x + 1' (), (21
2 1 1 ( . 02(X)

(29'(xz) = <' . (4 (9j(,-,)+ '(.,) . ¢i(.x)) + 2. o2(z) . O'(x) + 2.9'(.x). Q,(.-,) (2o_,,
'1
+ 2. o (.x) , 01 (x) + 4 • 0'( ). 2(X) - i',(X) 02(X)),

0"(3) ) (201)
2 ). o(x) - (). o,(x) + 4 , ((x). o,(x) - 2.. (x). 20))

2 --(x) Ox)+7. (x).9 2 (x)))/(10- 1.) . T(x)+ 2 ..- (.r)).

39



subject to boundary conditions

1
1 4)(a) = 2(a) = )'(a)= T(a) -- = 01 (a)= 0,2( k(a) = 0, (205)2 2

1
01 (c) = 0'1'(C) = 2(C) = (C)= (c) - - = 01(c) = 02(C) = '(c) = 0, (206)

2

and with x E [-1/2, 1/2]. We use as an initial guess the approximations

01(z) = E-cos( r-z), (207)

02(X) = e 2 .c 2 .sin(2.%.x), (20S)

T(x) = C2 .c 3 .sin(2.r.x)-, (209)

01(X) = (.cI • cos(7r, X), (210)

02(x) = C2 c4 .sin(2.r.x), (211)

=( C3. ( " cos(r -x) + Dd . cosh(v/. ak -X)

(C5 -72 + 5 . a2

C6 cos(3 •-. x) - 3. Dd. cosh(V5akX)
972 (212)

The constants in this experiment are given by the formulae

R = 2000, (213)

ak = 2.2, (214)

rr = 10, (215)

2. (rr -1) (216)
rr + I

roo = 8. r . a k ,  (217)
2

7= 2 + ak'

C2 = . c, C1  2 (219)2 .- a .2 ro o - 8 .roo .- a
Q2 .- 8

C3 k .C (220)

C4= ak.(2. C2 + .c) (221)
2 22 •to • a0
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C5 = H- L--.( 7.r, -5-ak,)- C 2e .,2., i"2 + 5.o-a , (222)
2

co = . (- .(3. , + a( 5 - 3 ( .l C oo - a , (223)

2 2

Dd = r/(vr. ak . sinh(V5/ . ak/2)), (221)
/ R - 0

f = R . (225)
.(c3 + c 4 /4) .roo

In order to reduce the problem to a system of integral equations, we first solve for )1', 2/"'
in the linear system involving 47", .., ,,,, obtaining a new problem which does not contain
dependencies among the variables. We reduce this new problem to a first order system, and
then use the results of Theorem 2.10 to express 4 by the formula

D(x) = 91(x). r(X),

with T [a, c] L(R 16X16 ) given by the formula

IV(x) = diag(VA, OA, V'n, 0A, V'A, V'n, ?bA, CB), (226)

with [-I, e]-- L(R 2 x2 ) defined by the formulae

'OA(x) = - 2 i (2271)

?IB(X) = (1 -  + (22S)

and with r : [a, c] R' the solution to an equation of the form (40), subject to boundarv
conditions of the form (41). The results of Theorem 2.4 are then applied to reduce this new
problem with inhomogeneous boundary conditions to a problem which boundary conditions are
homogeneous. For these experiments, the background Green's function is chosen to correspond
to the equation

0(x) = 0, (229)

subject to bouitdary conditions (206).
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